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Abstract

This report discusses different approaches to stable H °° controller design applied to the

problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H c° controller

is investigated by analyzing the effects of changes in the performance index weights, and

modifications in the measured outputs. The existerLce of a stable suboptimal controller is

also investigated. It is shown that this is equivalent to finding a stable controller, whose

infinity norm is less than a specified bound, for an unstable plant which is determined from

parametrization of all H °° controllers. Examples are given for a gust alleviation and a command

tracking problems.

_This work was performed while the first author was a NASA/OAI Summer Faculty Fellow at NASA Lewis

Research Center.





1 Introduction

The problem offindinga stablefeedbackcontrollerisknown as strongstabilization,and ithas

been widelystudiedinthe literature,seee.g.[1].One ofthemotivationsbehind thisproblem is

that,when the plantisstable,unstablecontrollersare not tolerantto faultsin measurements.

An example of thisis when a feedback path is broken, such a controllermay lead to an

unbounded response for a bounded referenceinput. Also, from a real-timeimplementation

point of view,itmay be undesirableto have an unstablefeedback controller,[2],[3].

A necessaryand sufficientconditionfor the existenceof a stronglystabilizingcontroller

isthe parityinterlacingproperty (p.i.p.)[4].A plant satisfiesp.i.p,ifthe number of poles

between any pairsof distinctblockingzeroson the positiverealaxis(including+oc) iseven.

There are proceduresforconstructingstablecontrollerswhich stabilizea given plant,[5,1,4].

However, there isno simple parametrizationfor the setof allstronglystabilizingcontrollers.

Usually,closedloop stabilityis the firstdesign requirement. But one is alsointerestedin

achievingsome kind ofrobustnessand performance levelin the controllerdesign.This require-

ment can be achieved(with a certaindegreeof conservatism)by using7_°° controltechniques.

Therefore,findingstronglystabilizing_oo controllersisan important researchproblem, which

isthe subjectof thisreport.Itshould alsobe mentioned that some promising resultsappear

in [6](seealsoreferencestherein)on the _2 versionof thisproblem. The effectsof weight

selectionon the stabilityofthe optimal 7_°° controllerforSISO plantshave alsobeen studied

in[7].
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The plant consideredin thisstudy is a linearmodel of the longitudinaldynamics of an

experimental F-15 aircraftwith pitchvectoringnozzles.For thisplant,two 7./oocontrolde-

sign problems are defined. The firstone dealswith gust alleviation,and the second one is

a command tracking problem. The resultsof [8],[9]and [10]are used in order to obtain a

parametrizationof allsuboptimal _oo controllers.The underlyingoperatortheoreticalresults

for thisparametrizationcan be found in [11,12],see also[13]formore details.Most com-

merciallyavailablesoftwares(e.g. robust controlmodules of MATLAB and MATRIXx)

generate the so-called"centralcontroller"of [9],(seeSection2.2 for the precisedefinitionof

the centralcontroller). Here, the effectof structuralchanges in the plant (e.g.adding one

more output forfeedback)on the stabilityofthe centralcontrollerisstudiedfirst.Then, the

effectsof scalingthe performance index weightingfunctions,and the effectof increasing(or

decreasing)the _co suboptimal peformance level7, on the stabilityof the centralcontroller

are studied. Finally,the parametrizationof allsuboptimal _oo controllersis studied,and

severaldifferentmethods of findinga stablecontrollerin thisparametrizationare discussed.

This isa significantproblem, because fora given admissible7 the centralcontrollermay be

unstable,but theremay be a stablecontrollerin the setof allcontrollerswhich achievesthe

same performance level.

The restof thispaper isorganized as follows.In the next sectiona background on the

standard _oo controlproblem isgiven,along with the formulae forthe centralcontrollerand

the parametrizationofallsuboptimal controllers.The plantmodel consideredinthispaper is

alsodescribedin the next section.Section3 isdevoted to the studieson the stabilityof the



centralcontroller.In Section4,stablesuboptimal _foocontrollersareinvestigatedforthe gust

alleviationand trackingexamples. For both of these examples itisshown that there exists

a stablesuboptimal controller,while the centralcontrollerisunstable. Finally,concluding

remarks are made in Section5.

2 Background on 7-(°0control

2.1 Standard problem set-up

The so-called"standard ?/oocontrolproblem" dealswith the system shown in Figure i. The

system equationsare assumed to be given by the following

_(t)= A_(t)+ B1w(t)+ B2u(t) (I)

z(t)= C1z(t)+ D11w(t)+ D12u(t) (2)

V(t)= C2_(t)+ D2_w(t)+ D22_(t) (3)

where z representscombined statesof the system, and components of zv are the exogenous

signals(referenceinputs,disturbances,measurement noises),components of _ are the control

inputs,components of y are the measured signals,and components of z are internalsignalsto

be controlled.The optimal_oo problem istofinda feedbackcontrollerK (whose inputisy and

output u) sothatthe closedloop systemisstable,and the worst energyamplificationfrom w to

z isminimized. This problem isequivalentto findinga stabilizingcontrollerwhich minimizes

llTz_[[oo,where Tzw(s) is the closedloop transferfunction from zv to z. The suboptimal



7-/°°controlproblem isto finda stabilizingcontrollerso that [[Tz_lloo< % for a specified

performance level7.

Usually,an 7_°° controlproblem isfirsttransformedto the above standard form. Then,

the controller is obtained from the matrices A, B1, ]32, C1, C2, Dll, D12, D21, D22, using

algebraic Riccati equation solvers. The controller formulae are given in Section 2.2.

2.1.1 Aircraft Model

In order to demonstrate how one setsup an _oo controlproblem, two examples willbe con-

sidered. Both of these examples involvea nominal plant,which is a linearmodel for the

longitudinaldynamics of an aircraft.The plantisdecribedby

_p(t) = Apzp(t) + Bpup(t)

yp(t) = _zp(t)

where zp are the states, up denotes the command input and yp denotes the plant output, and
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where Ca=57.2958[0 1 0 01 , C_p=57.2958[0 0 1 01.

The first component of yp(t) is the angle of attack a(t) (in degrees) and its second component

is the pitch angular rate %(t) (in degrees/sec). The command input up is the nozzle pitch



vectorangle(indegrees).The components ofthe statesxp ofthe airframeaxeforward velocity

(in ft/sec),angle of attack (in radians),pitch rate (in rads/sec),and pitch attitude0 (in

rads),respectively.In thissystem the command signalup isthe output of an actuatorwhose

dynamical behavior isdecribedby

 o(t)= -25xo(t)+ 2su(t)

up(t)= xo(t),

where u(t)denotes the command signalto be generatedby the feedback controller.

The polesof the transferfunctionT_p,_p,from up to yr,are

[÷0.634, -0.8647, -0.2206 + j0.1274] ,

and the zeros of the first component T,p,a and second component T,,p,qp, of T,p,_p are

[-39.6, -0.1382_ j0.1726] and [-0.436556, 0.000, %0.002912]

respectively. Note that this plant satisfies the parity interlacing property, but the transfer

function from up to qp does not. In other words, there exists a strongly stabilizing controller

for this plant. But, if the first output a(t) is not used as a control feedback, then for the

resulting plant all stabilizing controllers are unstable.

2.1.2 Tracking Problem Definition

Now the T/°0 control problem, associated with tracking of a-command signal, can be defined in

terms of the system shown in Figure 2, where Ws(s) is the sensitivity weight, and Wr(s) is the
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weight for the complementary sensitivity. Usually Ws is chosen as a low pass filter, and WT

is chosen as a high pass filter. This means that low frequency reference inputs are considered

for tracking, and high frequency unmodelled dynamics are taken into account for robustness,

see [5]. Accordingly following weights are chosen in this problem

Ws(s) - Cs(s - As)-lBs where As = -1/335, Bs = 1000/335, Cs = 1,

WT(,_) = Ct(8 - A_)-IB_ + Dt where At = -1/.00278, Bt = -99.999/.00278, C_ = 1,

and D_ = 100, with R1 = 1/3, R2 = 1/3, R3 = 0.2, R4 = 0.02 K1 = 3, K2 = 0.001. The

scalars R1,..., R4 assign relative weights on the internal signals of interest and K1, K2 scale

the measurement noises. For example if the size of Up has to be made small then R3 (weight

on up) is chosen relatively large. In Figure 2, wl represents the reference input (we want a to

follow wl) and K2w2 represents a small amount of noise which is present in the measurement

of qp. If _) := and _ := 25R4u, then the state equations, corresponding to the

[y2/g2J
generalized system from [w fi] to [z

-25 0 0 0

Bp Ap 0 0

0 -B, Co As 0

0 BtCa 0 A_

_], are in the form (1-3) with

B1 =

0 O"

0 0

B2 -

B_K1 0

0 0

"l/R4"

0

0

L 0



C1 "-

0 0 R1C, 0

0 R_DtC,_ 0 R2C_

Ra 0 0 0

-25/t4 0 0 0

Oil -

"0 0"1 ro

0 01 [0
D12 = !

00I [0
I

I

.0 0J Li.

[::] [:]C2 -- D21 - D22 -

Cip/K2 0

Note that the controller generates u = K(s)y. But first the controller which generates fi =

_.(s)_/,canbefoundandthenfrom_.(_)onecandetermineK(s)=(25R4)-l[((s) [: 1 01-1
K2

Numerically it is simpler to find fl', because in this set-up D12 and D_I axe normalized to have

entries 1 and 0 only. See the formulae in [9] for a comparison.

2.1.3 Gust Alleviation Problem

Consider the plant described above with gust affecting the system dynamics as follows

, in other words yp =
Cqpg qp

, and



1 0

V 0 O"

[iOi]22_ V 1 0 2 1

Bg=o'V_-- 1 0 Allg=-_ 2 A219 =-_ 0 0 0

o v /v 1
0 0 O.

0 0

0 0

with V = 300ft/sec, L = 1670ft, and 0 < e < 10, (a moderate gust, o = 5, will be considered).

The gust model in the above formulae is the Dryden model, which is described in [14]. The

command signal up is generated by an actuator whose input is u, which is to be generated by a

feedback controller: up = Wau, where WA(S) = C,(s - Aa)-]B,,, with Aa = -25, Ba = 5 and

Ca = 5. The _oo problem associated with this system is to minimize the effect of Wx,..., w4

on zl,...z4 as shown in Figure 3, where w3/Kx and w4/K2 represent measurement noises, zl

and z2 are scaled values of _ and % respectively, and z3 is the scaled control, and z4 is a blend

of the control and the control rate.

For this problem define _) := , then the system equations which represent the

LK2y2 J

transfer function from [w, u] to [z, ._] are in the form (1-3), with

A = B1 = B_ =

BpgCa Ap9 B 9



C1 -

o RlC_

0 R2Cqpg

R3Ca 0

0 0

D12 -- I
!

ol
]

.lJ

C2 = D21 = [0zxz Izx2]

KzCqpg J

and D. = 04xs, Dzz = 02×x. Similar to the previous case, once a controller/_', which generates

u from _, is determined, the equivalent controller K, which generates the same control u from

y, can be found by setting K(s) = _'(s)

Ks

2.2 Controller Formulae

The formulae of [8, 9, 10] for 7-/°o controllers, which satisfy a certain specified performance level

7, is given below. The problem formulation, in both tracking and gust alleviation, satisfies the

structural assumptions of [9]. The controller expression is simpler if the formulation satisfies

the structural assumptions of [8]:

Assumptions

A1. (A, B2, C2) is stabilizable and detectable,

A2. Dll = 0, D22 = 0,

A3. D_ = ,

D21
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A4. Dr It, = [0 I].

The gust problem defined above satisfies these assumptions. For the tracking problem the

orthogonality assumptions A3 and A4 are not satisfied, therefore for this example a slightly

more complicated formula, [9], will be used.

Now consider the problem formulation given in (1-3), and assume that they satisfy A1,

..., A4, e.g. the gust alleviation problem is in this form. Then, set up the following Algebraic

Riccati Equations (AREs)

ATx + XA + X( _B1B T - B2BT)X + cTc1 = 0 (4)

AY + YA T + Y(_CTC,-CTc2)Y + B1B T =0. (5)

It has been shown that, [8, 9], there exists a stabilizing controller which makes IIT_,zllc¢ < 7 if

and only if there exist unique solutions X and Y, for (4) and (5), such that

(i) X and Y are positive semi-definite,

, T _ B2BT2)X and A + Y(_cTc, cTc2) are(ii) eigenvalues of Ax := A + (-_B1B 1 Ay := -

in the open left half plane, and

(Hi) the largest eigenvalue of XY is strictly less than 72.

Moreover, if (i)-(iii) hold then all controllers, /_', which stabilize the dosed loop system and

achieve llTzwlloo < 7 are parametrized as follows

_(t) = Acx=(t) + alc_/(t)+ a2_q(t) (6)
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where

fi(t) = Clczc($)+ q(') (7)

r(t) = C_oz0(,)+ 9(0 (8)

Ac = Ax - zycTc2, (9)

_,c = zYcr_, (10)

B2c = ZB2, (ll)

c,o = -Br_X, (12)

C2c - -C2 (13)

and q(t) is generated by a transfer matrix Q(s), whose input is r(t), with Q E _oo (that is

Q must be stable) and [IQ[Ioo < 3'- Obviously, there axe infinitely many choices for Q(s) and

hence there axe infinitely many suboptimal controllers. Implementation of this controller is

shown in Figure 4. In particular, one can choose Q(s) = O, this gives the "central" controller.

The issue of selecting Q will be discussed in Section 4. In [9] and [10] an alternative expression

for suboptimal controllers is given. This expression is in the same form as (6-8), but its state

space realization is slightly different

Ao = Ay- B:Br_XZ, (14)

B,¢ = YC T, (15)

B2c = B2, (16)

C1_ = -BTXZ, (17)

11



c2c = -c z. (18)

The above realization (14-18) can be obtained via a state transformation on (9-13).

It should be mentioned that for the tracking problem, the parametrization of all suboptimal

controllers is exactly the same as (6-8), but the AREs associated with this problem, and hence

computations of Ac, B1¢, B2c, Clc and C2c, are slightly more complicated, see [9] for all the

details.

Note that the central controller is stable if and only if Ac is a stable matrix (i.e. all the

eigenvalues of Ac have strictly negative real parts). Whereas, stability of a controller which is

obtained from a non-zero Q(s) depends on Ac, B2c, C2c and Q(s), to be discussed further in

Section 4.

3 Stability of the central controller

In this section the effects of structural changes and weight scalings, on the stability of the

central controller, will be discussed.

3.1 Changes in the output variables

Consider the tracking problem defined in Section 2.1.2. The central controller corresponding

to 7 = 2 is unstable (for this system the optimal value of 7 is between 1.5 and 2). It will be

shown that by changing one of the output variables it is possible to transform the problem to
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a form where it is easy to analyze stability of the central controller. For this purpose replace

the second output y2 - qp + K2w2 with y2 - up - a where up = Caxa + K2w2. Here K2w2

represents a small amount of actuator noise, whereas in the previous case it was a measurement

noise. Also for simplicity redefine z4 from R4u to z4 = u. Then, the generalized plant is as

shown in Figure 5.

As before, if _)i := yi/K_, for i = 1,2, then the system equations are as in (1-3) where

A

Aa 0 0 0

BpCa Ap 0 0

0 -B,C,_ As 0

0 BtCc, 0 At

B1 .-

0 0

0 BpK2

BsK1 0

0 0

B2 -

ol
ol
oJ

C1 ._

0 0 Ca 0

0 D_C_, 0 Ct

C_ 0 0 0

0 0 0 0

C2 --
0 -Co�K1 0 0]

K 0C_/K2 -C,_/ 2 0

and D12 = [0 0 0 1]T, D22 -- I,/)n = 0, 1)22 = 0. It is easy to check that if below assump-

tions (dffl-dff3) are satisfied then the problem formulation is in the form of the disturbance

feedforwaxd (dff) problem defined in [8],

dffl. C,,B_ is invertible, Dt _ 0, Ks _ 0,

dff2. (Ap, Bp, Co) is stabilizable and detectable,

dif3. Aa, As, A_ and (Ap + BpCo) are stable.
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In this case the A-matrix of the central controller is

Ac := A - B1C2 - B2BTX.

For the plant shown in Figure 5, the above dff assumptions are satisfied. Indeed one can check

that for Ap, Bp and Ca given above the eigenvalues of (Ap + BpCa) are at -0.1221 =]=j0.1757

and -0.2597 fl: jl.7419. It is also easy to verify that in this case Ac is in the form

A,_ - B,,BT Xll _ _ R

0 Ap+BpCa 0 0

0 0 A_ 0

0 BtCa 0 At

AC --

where Xll is the 1, 1 entry of X, and R represents an entry whose value is not important. By

partitioning this matrix one can easily see that the eigenvalues of Ac are the eigenvalues of its

diagonal blocks. Since Ap -I- BpCa, As, At, A,, are stable and BaBTXll is a positive scalar,

one concludes that the central controller in this case is stable.

The purpose of this example was to show that by modifying one of the outputs it was

possible to obtain a central controller whose A-matrix Ac has a certain special structure for

which the stability analysis is easy. Of course for more complicated examples it may be difficult

to see which way the output should be modified to get a stable controller. Moreover, in some

cases it may be impossible to modify the output physically.
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3.2 Scaling the weights and adjusting 7

Now the effects of weight scalings on the stability of the central controller will be studied for

the gust alleviation example shown in Figure 3. Note that in this example one can think of K1,

K2, R1, R_, R3, R4 and a as scaling parameters. As illustrated by Figures 6 and 9 through 11,

changes in t(1, R1, R2 and R3 do not significantly affect the stability of the central controller.

These figures are generated with the nominal values K1 = R1 -- R2 - R3 = 1, ](2 = 0.01 and

a = 5. It is seen from Figures 7 and 8 that with these nominal values, if Ks is larger than 0.1,

the central controller is unstable, for both 7 = 25 and 7 = 30. In the above analyses, large

enough 7 values are chosen in order to guarantee the existence of an H °° controller for the

parameter variations considered in each plot shown in Figures 6 through 11.

Now fix K1 - K2 = R1 = R2 = R3 = 1 and a - 5. For these values of the scMing

parameters

18<qopt< 19,

and the eigenvalues of the central controller for two different values of 7 are given below.
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? = 19 7 = 25

-0.16 + j0.06

-0.18 4- j0.0057

+ 0.6

-10.5

-16.8

-34.3

-0.17 4- j0.053

-0.18 4- j0.00567

+ O.S

-5.5

-17.1

-34.9

This example shows that by increasing the value of _, it is possible to move the unstable pole

slightly towards the left half plane. But the central controller remained unstable even for _, as

large as 80. In fact, it is known that [8], as ? --. oo the central 7-/¢¢ controller converges to the

optimal 7-I2 controller, which does not have to be stable.

In the tracking problem, the general rule of thumb is that if one is willing to give up the

performance to gain more robustness, then one should scale the sensitivity weight Ws by 1/k

and complementary sensitivity weight by k > 1. Then, for k sufficiently large the central

controller is expected to be stable, see [7] for a delay system example. To illustrate this point,

now consider the generalized plant of Figure 12, which is a slightly different version of the

traA:king problem defined in Section 2.1.2, (there are two more outputs for feedback, a and 0,

with slight additive noise). For this problem when k = 1 the optimal value of 7 is between 1.5

and 1.75, and for "y = 1.75 the central controller is unstable. By increasing WT and decreasing

Ws by a factor of k > 2 one gets a stable central controller for 7 = 2, as illustrated by
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Figure13. However, this decreases overall performance, and increases response to noise.

4 Existence of a stable suboptimal controller

The previous section was devoted to studies on the stability of the central controller for a given

performance level 7. Sometimes the central controller may be unstable, but there may exist

another controller which is stable, and achieves the same performance level 7- In Sections 4.1

and 4.2 this situation will be illustrated with the gust alleviation and tracking examples. But

first some possible ways to find such a controller are described.

Recall that, for a given 7 > 7opt, all suboptimal controllers are parametrized by (6-8) where

q = O(s)r, with O E 7_°° and IIOll_< 7. That is O is the free parameter, but it has to be

stable, and its norm has to be bounded by 7- Suppose that Q has a state space realization

_q(t) = Aq_q(_) + Bqr(t)

q(t) = CqXq(t) + Dqr(t).

Then, inserting q(t) into (6) and (7), and using r(t) given by (8), one gets the following

realization for the controller (which is a transfer function from _ to fi)

_(t) (19)

(20)
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Note that the A-matrix of this controller is

Ac + B_D_&2c B2_Cq]AK := • (21)

BqC2_ Ao

Hence, there exists a stable suboptimal 7_°° controller for a given performance level 7 if and only

if there exists a "subcontroller" Q(s), stabilizing the "subplant" Go(s) := B2e(sl - Ac)-lC2c,

such that Q E 7"(°° and IIQIIoo < 7. Thus, testing whether there exists a stable suboptimal

7_°° controller amounts to checking if Gc is strongly stabilizable by a controller whose norm is

bounded by 7- In other words, it is necessary (but not sufficient) that Gc satisfy the parity

interlacing property. If G_ satisfies p.i.p., then the next question is: can we find a norm

bounded stabilizing controller? To the authors' knowledge there have not been any published

results on this problem.

One possible way to approach this problem is to apply any stable controller design procedure

(see e.g. [1, 5, 4]) to Gc(S), and check whether this controller's oo-norm is bounded by 7.

Obviously, there is no guarantee that this method will work. A rigorous approach would be

to study different stable controller design algorithms, and try to determine if it is possible to

modify them so that the oo-norm of the resulting controller is bounded by 7-

Another approach, which is more direct, would be to study the structure of all controllers

stabilizing Go, and determine ways to choose the free parameter so that the controller is stable

and norm bounded. To illustrate this method assume that G_ is SISO, then all stabilizing

18



controllers are in the form [1]

Q= Xa + DGQQ = Da(XG + DGQQ)
YG - NGQQ 1 - NG(Xa + DcQQ)

where Gc = Nc/Dc and Na, Da, Xa, Ya E 7"[.°° satisfy the Bezout equation

NGXG + YGDc = 1,

and QQ E 7-l°° is the free parameter. So, in order to have Q E 7_°° and IIQI}oo < 7, one should

try to make IIXa + DcQQHoo as small as possible. However, by the Bezout equation Xc is

equal to 1/No, at the zeros of Da in the right half plane. So there is a limit how small this

expression can be made. Because of time limitations the authors did not further investigate

this method of trying to select an appropriate QQ E 7"l°°. It may or may not give satisfactory

results.

Note that, when the realization (19-20) is minimal, a dynamic Q(s) (i.e. Q(s) is non-

constant) leads to a controller whose order is larger than the order of the generalized plant.

This may be an undesirable situation. Therefore, one may want to restrict the search to non-

dynamic Q's, in other words Q(s) = Dq which is a constant. In this case, Q is automatically

in T/°°, so the only restriction is on the norm, that is ama=(Dq) < _/. Moreover, if the number

of inputs _ and outputs fi, of Go, is small then a parameter search, in the space of the entries

of Dq, can be done to find a feasible Dq. In the next section this approach will be illustrated

on gust alleviation and tracking examples defined earlier.
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4.1 Example: gust alleviation problem

Consider the 7_°° control problem defined in Section 2.1.3, with the parameters R1 = R2 =

R3 = K1 = K2 = 1 and a = 5. For this problem 18 < 7op_ < 19; and for 7 = 25 the central

controller is unstable, with a right half plane pole near +0.3. Now suppose 7 = 25 fixed. Then,

the problem is to determine if there exists Dq = [Dql Dq2] with

+ <25 (22)

such that the eigenvalues of AK = Ac + B2cDqC2c are in the open left half plane. The region in

the Dq-pla_e which gives an a_Tirmative answer to this question is the shaded area in Figure 14,

which falls in the circle (22). Note that allowable Dq's are in the form

Dq- R [cosO sinO]

where 0 < R < 25 and -r _< 8 < lr. The plot of maxReA(AK), as R varies between 20 and

25, axe as shown in Figure 15, for two cases of fixed 0 = -10 ° and 0 = -26 °. Also, the plot of

maxReA(A/_-), as 0 varies between -40 ° and -28 °, are given in Figure 16, for fixed R at 23.5

and 24.9.

Figures 15 and 16 show that 8 should be small and R should be large in order to make AK

stable. Besides the stability of AK, it is necessary to check the overall system performance in

the frequency domain, as well as in the time domain, in order to determine the optimal value

of Dq. To illustrate the overall system performance allow to be set equal to Dq = [24.75 0.00].

As expected the dosed loop performance is within specified level 7, i.e. a,_=x(Tzw(jw)) is below
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7 = 25, see Figure 17. For this system, the effects of a pulse gust (i.e. w1(1) = w2(t) are equal

to a unit pulse of duration 0.25sec) on zl,..., z4 axe shown in Figure 18.

4.2 Example: tracking problem

For the tracking problem defined in Section 2.1.2, recall that 1.5 < %pt < 2, and for 7 - 2

the central controller generated by the algorithm given in [9] is unstable. Now consider the

problem of determining if there exists Dq - [Dql Dq2] such that AK - A¢ + B2cDqC2¢ has all

its eigenvalues in the open left half plane, and

+ < 22. /23)

The shaded region in Figure 19 which fails in the circle (23) indicates possible values of allowable

Dq which make AI< stable. Note that compared to previous example, we don't have much

freedom in choosing Dq, it has to be chosen close to Dq = [-1.99 0.00] in order to get a stable

AK.

In the remainder of this section the performances of the suboptimal 7_0° controller obatined

by choosing Q(8) = Dq = [-1.99 0.00], and the unstable central controller, i.e. the one with

Dq = [0 0], will be compared. Frequency domain closed loop performances are compared in

Figure 20. As expected both control]ers yield IIT_llo_ < 2.

It should also be mentioned that the observation noise/t'2tv2 is added to our original _o¢

control problem definition in order to satisfy rank conditions required in the solution procedure

given in [9]. Also, the weights are added to the standard 7-/°° control problem in order to obtain
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a controller,which givesdesiredloopshapes;i.e.the weightsare not physicallypresentin the

system. So, once a controllerisobtaineditcan be implemented on the physicalplantas shown

in Figure 21. In thisfigureac(t)representsthe reference(command) input to the controller,

which generatesu. The signalu is an input to the actuator,whose output up isthe plant

input.As before,plantoutputs are a and qp.

Time domain performances of the controllersobtained for7 - 2,with Dq = [-1.99 0.00]

and with Dq = [0 0],are shown in Figure 22. It isseen that the response _(t) is better

forDq = [0 0] (i.e.bettertrackingof a negativeunitstep ac(t)),and the command signals

up(t)are similarforboth cases.Frequency domain performance plotsare shown in Figures23

and 24, where individualBode plots(from ac to up(t)and a(t)respectively)are shown. As

expected the main differenceinthe frequencydomain characteristicsare inthe highfrequency

behavior.Note that when Dq _ 0 the controllerisnot strictlyproper,so compared to Dq = 0

thereislesshigh frequencyroll-off.

5 Conclusions

In thisresearchpossibleways of obtainingstablecontrollers,achievinga certainpre-specified

7"/c°performance levelV, are identified.First the centralcontrollerAc is made stableby

scalingthe weights and/or modifying the measured outputs. Secondly,existenceof a stable

suboptimal controllerisinvestigatedby adjustingthe freeparameter Q(s) which appears in

the characterizationof allsuboptimal controllers.In the firstmethod, sincethe structureof
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the 7.(ooproblem ismodified,the performance of the stablecontrollermay be differentthan

the originalunstable controller.In the second method, itisexpected that if7 is "dose" to

itsoptimal value,then allsuboptimal controllersare expected to be "dose" to the central

controller,see e.g.[15].Therefore,ifthe centralcontrollerisunstableand if"_iscloseto %pt,

theremay not exista stablesuboptimal controller.So,forthe second approach to work 7 has

to be "sufficientlylarger"than 7opt.

The second approach leadsto an interestingproblem: given an unstableplant Gc(s),find

a stronglystabilizingcontrollerQ(s) such that llQl]oo< 7. This problem is difficultto solve

incomplete generality.Thereforethe authorshave concentratedtheireffortsindemonstarting

the existenceof a constantnorm bounded O(s) = Dq which stabilizeGo(s), for both gust

alleviationand trackingproblems. The approach herewas simplebrute-force.Sincein thiscase

the number ofinputs and outputs,forthe controller,was 2 and i respectively,the parameter

space was two dimensional;and itwas easy to checksufficientlylargenumber ofpointsto get

an idea about the regionin the Dq-space thatgivesa solution.

Recallthat the controllerA-matrix, when Dq isused, isgiven by A/_-= Ac + B2cDqC2c,

and from (9-13) Ac = Ax - zycTc2, B2c = ZB_, and C2c = -C2. Therefore,

Ah" = Ax - Z(YC T + B2Dq)C2, (24)

where Ax is stable. This structure might give an idea about how Dq should be chosen for

more complicated input/output definitions. For example, one may try to minimize the norm

of Z(YC T % B2Dq)C2. This is a relatively easy optimization problem, which can be solved
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using existing commercially available software. However, there is no guarantee that after

minimization all the eigenvalues of AK will be in the open left half plane.

The effects of weight scalings and modifications in the measured outputs, on stability of

the central controller, are studied in the first part of this research. Recall that Ac is in the form

(9) or (14). More specifically Ac = Ax - ZYCr2C2 or Ac = Ay - B2Br2XZ where Ay and

Ax are stable matrices. If the measured outputs are modified, then C2 changes, and without

changing Ax it changes the term ZYCr2C2. Therefore, one might be able to design C2 so that

zycTc2 is "small" compared to the eigenvalues of Ax, and by using Gershgorin's theorem

[16] it may be possible to guarantee a stable Ac. Similarly, if control inputs can be redefined,

i.e. B2 can be modified, then one can try to make B2BTXZ "small" without changing Ay,

and this may lead to a stable controller. It is obvious from (24) that simultaneously modifying

C2 and selecting D_ which minimizes Z(YCT_ + B_Dq)C2 increases chances of getting a stable

controller whose poles are close to the eigenvalues of Ax.

References

[1] Vidyasagar, M., Control System Synthesis: A Factorization Approach, MIT Press, Cam-

bridge MA, 1987.

[2] Integrated Methods for Propulsion and Airframe Control Technology, Phase I Final Report,

McDonnel Douglas, NASA, United Technologies Pratt & Whitney, April 1994.

24



[3] Schaefer, P., "Re: Unstable H-infinity controller," Article No 2205 of the internet news-

group sci. engr. con'crol, May 20, 1994.

[4] Youla, D. C., J. J. Bongiorno, Jr., and C. N. Lu, "Single-loop feedback stabilization of

linear multivariable plants," Automatica, 10 (1974), pp. 159-173.

[5] Doyle, J., B. Francis and A. Tannenbaum, Feedback Control Theory, Macmillan, New

York, 1992.

[6] Wang, Y. W., and D. S. Bernstein, "H2-Suboptimal stable stabilization," Proc. of the 32rid

IEEE Conf. on Decision and Control, San Antonio TX, December 1993, pp. 1828-1829.

[7] Toker, O., and H. (_zbay, "On the structure of/./oo controllers," to appear in Proc. of the

33rd IEEE Conference on Decision and Control, Lake Buena Vista FL, December 1994.

[8] Doyle, J., K. Glover, P. P. Khargonekar, and B. Francis, "State space solutions to standard

H 2 and H c0 control problems," IEEE Trans. Automatic Control, AC-34 (1989), pp. 831-

847.

[9] Glover, K., and J. C. Doyle, "State-space formulae for all stabilizing controllers that satisfy

and H_-norm bound and relations to risk sensitivity," Systems and Control Letters, 11

(1988), pp. 167-172.

[10] Green, M., K. Glover, D. Limebeer, and J. C. Doyle, "A J-spectral factorization approach

to -/./c¢ control," SIAM J. Control and Optimization, 28 (1990), pp. 1350-1371.

25



[ii]Adamjan, V. M., D. Z.Arov, and M. G. Krein,"AnalyticpropertiesofSchmidt pairsfora

Hankel operator and generalizedShur-Takagi problem," Math. USSR S_rnik 15 (1971),

pp. 31-73.

[12]Adamjan, V. M., D. Z.Arov, and M. G. Krein,"InfiniteHankel blockmatricesand related

problems," .4MS Translations,111 (1978),pp. 133-156.

[13]Francis,B.,A Course in II°° Control Theory,Lecture Notes in Controland Information

Sciences,vol.88, SpringerVerlag,1987.

[14]"MilitarySpecification- FlyingQualitiesof PilotedAirplanes,"MiI-F-8785C,November,

1980.

[15] Toker, O., and H. Ozbay, "H °° Controllers for unstable distributed plants," Proceeding s

of $2nd IEEE Conference on Decision and Control, San Antonio TX, December 1993,

pp. 1170-1175.

[16] Horn, R. A., and C. R. Johnson, Matriz Analysis, Cambridge University Press, 1985.

26



w

U

v

v

Generalized
Plant

Z
v

Y

Controller I=

Figure 1: Standard Feedback System

27



Yl

WS

Actuator Plant
qp

÷

WT

Y2

Figure 2: Tracking Problem

28



W3

W4

1/K1

1/K2

U

Actuator

Z 4

% Plant

Z 3

alpha

qr,

R1

R2

Yl

Zl

Z2

Figure 3: Gust alleviation problem

29



W

U

t"

k

V

Generalized
Plant

Controller

Q( ) ']

v

Z

q

Figure 4: Suboptimal 7f °° controllers

3O



Actuator

W2

+

PLANT alpha

Z4 Z3

Figure 5: Alternative tracking problem definition

31



-.1327 --

-.1328 --

-.1329

-.1330 --

-.1331 --

-.1332 --

E -.1333 --

-.1334 --

-.1335 --

-.1336 --

I I I I I I I I I I I [ I I I I I I

-'1337.10 1.0 10

KI

Figure 6: The effect of K 1 on the most unstable eigenvalue of Ac; for _, = 30

32



2.0 m

1.8

1.6

1.4

I i I ,l,i,l I , I ,i,l,l I , I ,I,I,I I _ I ,i,I,l

10--2 10-1 100 10 l

K2

Figure 7: The effect of K2 on the most unstable eigenvalue of Ac; for 'V = 25

33



1.4 m

1.2

1.0

! , I , l,l,i I , I , l,i,l I , ! , l,i,l I , I , l,l,l

10--2 10-1 100 10 l

K2

Figure 8: The effect of K 2 on the most unstable eigenvalue of Ac; for _/= 30

34



-.134

-.136

-.138

._ -.140
°_

_ -.142

E

-.144

-.146

-.148

m

m

m

_l_I I I I , i ,I_I

i0-1 100 101 102
RI

Figure 9: The effect of R 1 on the most unstable eigenvalue of Ac; for _/= 80

35



-.1300--

-.1305 --

-.1310 --

-.1315 --

.m
&

_'_ -.1320 --

E

-.1325 --

-.1330 --

-.1335
10-2

I , I a I , I , I I , I I I , I ,I I

10-1 100

R2

Figure 10: The effect of R 2 on the most unstable eigenvalue of Ac; for "y = 30

101

36



-.108--

-.Ill --

-.114 --

-.117

< -.120 --

"3

-.123 --

-.126 --

-.129 --

-.132 --

-.135
I i I i I I I I [

100
10-I R3

Figure 11 : The effect of R 3 on the most unstable eigenvalue of Ac; for _, = 25

37



W2

alpha _+

PLANT

alpha

WT

WS

Figure 12: Tracking problem with more outputs, and scaled Ws, WT

38



.<

olq

.024

.021

.018

.015

.012

.O09

.006

.OO3

-.003

k

Figure 13: max ReR(Ac) versus k, for 7 = 2

39



30

20

10

-10

-20

-30 i I I f
-30 -20 -10 0 10 20 30

Dql

Figure 14: Values of Dq which make A K stable

40



0.01

Theta=-10

0.005

0

v

-0.005

n"
V

x

E

-0.01

-0.015

8

6

4

C_

2

rr"
x

E

0

-2

-0.02 ' '
20 22 24 26 20

x 10 "_ Theta=-26

R

, ..'• "

a i J

22 24 26
R

Figure 15: Effect of R on the most unstable eigenvalue of A_:, for B = -10 ° and -26 °

41



R=23.5

--" 1

v

._m
---0

n-
X

E

-2

-3

x 10 -3

°1
4

3

2

1 I

-35 -30

Theta

-4

-5
-4(

<
._m
--- 0

n-
X

E

-2

.--3

-4

x 10 -3 R=24.9
5

................. . ................ ; .....

........................................

................. , ......................

1

............... , ................ I .....

I I

-35 -30
Theta

Figure 16: Effect of # on the most unstable eigenvalue of AK, for R = 23.5 and R = 24.9

42



25.0

24.5

24.0

=_
•_ 23.5

23.0

22.5

22.0
10-2

Figure 17:

I i I ,I,I t , I , t ,I,l I i I t I ,i,i

10-1 100 101

Frequency, rad/sec

Closed loop performance for the gust alleviation problem;

Otmax(Tzw(j_)) versus _, for Dq = [24.75 0.00]

43



r ,

3 ............ i.............i..............

-1
0

15

2 4

time, sec

6

10

5

0

-5
0

.

i

2

5

0

L

-10 ' '
0 2 4

time, sec

15

10

5
_0

7_ 0

-5

' -10 ' '
4 6 0 2 4

time, sec time, sec

Figure 18: Time resposes to a unit pulse gust, for Dq = [24.75 0.00]

44



o.s::.......... i .........

_ B

1

-2.5 -2 -1.5 -I -0.5 0 0.5 1 1.5 2 2.5
Dql

Figure 19: Values of Dq which make AK stable

45



2.5

2.0

t_g

1.5 --
.-i
laO
e--

._ 1.O --

.5 --

Dq = [0, 0]

Dq = [-1.99, 0]

\
\
\
\
\
\
\

0 I t I , l,l,I I , I , 1,1,1 I , I t 1,1,1

10-2 10-1 100 101
Frequency, rad/sec

\
\

..%

I _ I , I tl,I

102

Figure 20: Closed loop performance for tracking problem; Otmax(Tzw(jto))

versus to, for Dq = [-1.99 0.00], and for Dq = [0 0]

46



rc

Controller Actuator PLANT

alpha

Figure 21: Controller implementation on the physical plant

47



alpha(t)

i ! ! z i

: i

[

: i

II'.

i i i ! i i i

0 time, _ 20

-1
0

u(t)
i i i !

i i :

i_........ ! ......... ! ......... ! ......... .......... i.......... !.......... :......... ?......... _.........

I ! i ! :: ] ] ! i

I I i : : : : : : :

tl i i i i i i i i
I I : : : : : i :

I I : : :_ i ...... i ....... : ......... : ...... ! ..... i...... !.... ....... i ...... i .......

-11 : i i : i : : i¢-- i---T---T---- - _ i i i

"'_/i.......:.......:......i........:........:.....................:........

I I I I I I I I

time.sec 20

Figure 22: Time responses to a negative unit step re(t);

Dq = [-1.99, O] (solid Line), Dq = [0, 0] (dashed Line)

48



100

G 0--

2
-I00 --

-200
10-2

I , I ,;,l,i I , I ,l,hi

10-1 10o

l , i,i,hl I o i,i,},l , , l,l,h[ I , l,l,h[

l01 102 103 104

Frequency, rad/sec

o

c_

200

-200 --

I I I I ilill I l l I IIhl I , I , I,hl I i I , I itil i'-'_'i, i_="_'T, i i i l il;l

10-1 100 101 102 103 104

Frequency, rad/sec

Figure 23: Bode plot of the closed loop transfer function from a c to Up;

Dq = [-1.99, 0] (solid line), Dq = [0, 0] (dashed line)

49



200

m
"_ 0

2

-20o -

-4OO
lO-2

I , l,l,hl I , l_l,hl

10-1 100

I , I ,l,hl I , I ,l,hl I , l,l,hl I , l,l,hl

101 102 103 104

Frequency, rad/sec

o

2OO

-200 --

-400
10-2

! , i,l,hl I t l,l,i,l I , l,i,l,l I , l,l,l,l I , l,l,hl I , i,l,hl

10-1 100 101 102 103 104

Frequency, rad/see

Figure 24: Bode plot of the closed loop transfer function from o_c to a;

Dq = [-1.99, 0] (solid line), Dq = [0, 0] (dashed line)

50





Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public reporting burden Ior this collection of infom,.alicn is exlimaled to average 1 hour per re6ponse, including the lime lor reviewing instructions, sea.'ching existing _ata sourco_.

gathering and maintainir_ the data needed, and completing and reviewing the colleotion of information. Send comments regarding this burden estimate or any other aspect of this
colisclion of inform_iofl, including suggestions lot reducing this burden, to Washington Headquarters Services. Dkectorate tor Information (_oerations and Repots. 1215 Jefferson

Davis Highway. Suite 1204. Arlington. VA 22202-4,302. and to the Office of Management and Budget. PaDermork Reduction Projec_ (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1995 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Stable H**Controller Design for the Longitudinal Dynamics of an Aircraft

6. A_R(S)

Hitay Ozbay and Sanjay Garg

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS{ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

WU-505--62-50

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-9421

10. SPO NSORI NG/MONITORING

AGENCY REPORT NUMBER

NASA TM- 106847

11. SUPPLEMENTARYNOTES

Hitay Ozbay, Ohio State University, Department of Electrical Engineering, 2015 Neil Avenue, Columbus, Ohio 43210;
Sanjay Garg, NASA Lewis Research Center. Responsible person, Sanjay Garg, organization code 2550, (216) 433-2355.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited

Subject Categories 63 and 08

This publication is available from the NASA Center for Aerospace Information, (301) 62 I--0390.

13. ABSTRACT (Maximum 200 words)

This report discusses different approaches to stable H**controller design applied to the problem of augmenting the
longitudinal dynamics of an aircraft. Stability of the/-/** controller is investigated by analyzing the effects of changes in
the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal control-
ler is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a
specified bound, for an unstable plant which is determined from parametrization of all/-/** controllers. Examples are
given for a gust alleviation and a command tracking problem.

14. SUBJECT TERMS

Multivariable control; Stable controller; Flight control

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

53
16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102


